Publications
LLM-based Code Generation
- Majdinasab, V., Nikanjam, A., and Khomh, F., Trained Without My Consent: Detecting Code Inclusion In Language Models Trained on Code, Accepted by ACM Transactions on Software Engineering and Methodology (TOSEM) [IF:6.6], 2024. View
- Tambon, F., Nikanjam, A., Khomh, F., and Antoniol, G., Assessing Programming Task Difficulty for Efficient Evaluation of Large Language Models, 2024. View
- Majdinasab, V., Nikanjam, A., and Khomh, F., DeepCodeProbe: Towards Understanding What Models Trained on Code Learn, 2024. View
- Tambon, F., Moradi Dakhel, A., Nikanjam, A., Khomh, F., Desmarais, M. C., and Antoniol, G., Bugs in Large Language Models Generated Code: An Empirical Study, 2024. View
- Moradi Dakhel, A., Nikanjam, A., Majdinasab, V., Khomh, F., and Desmarais, M. C., Effective Test Generation Using Pre-trained Large Language Models and Mutation Testing, Information and Software Technology [IF:3.862], 107468, Elsevier, 2024. View
- Moradi Dakhel, A., Nikanjam, A., Khomh, F., Desmarais, M.C., Washizaki, H., An Overview on Large Language Models. In: Nguyen-Duc, A., Abrahamsson, P., Khomh, F. (eds) Generative AI for Effective Software Development. Springer, 2024. View
- Moradi Dakhel, A., Nikanjam, A., Khomh, F., Desmarais, M.C., Washizaki, H., Generative AI for Software Development: A Family of Studies on Code Generation. In: Nguyen-Duc, A., Abrahamsson, P., Khomh, F. (eds) Generative AI for Effective Software Development. Springer, 2024. View
- Moradi Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M. C., and Jiang, Z., GitHub Copilot AI pair programmer: Asset or Liability?, Journal of Systems and Software [IF:3.514], 203, 111734, Elsevier, 2023. View
Bugs and design smells in ML
- Côté, P.O., Nikanjam, A., Bouchoucha, R., Basta, I, Abidi, M., and Khomh, F., Quality issues in Machine Learning Software Systems, International Journal of Empirical Software Engineering [IF:3.762], 29, Article 149, 2024. View
- Vidgen, B., Agrawal, A., Ahmed, A.M., …, Nikanjam, A., …, and Vanschoren, J., Introducing v0.5 of the AI Safety Benchmark from MLCommons, 2024. View
- Bouchoucha, R., Yahmed, A.H., Patil, D., Rajendran, J., Nikanjam, A., Chandar, S. and Khomh, F., Toward Debugging Deep Reinforcement Learning Programs with RLExplorer, Accepted by IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, 2024.
- Morovati, M.M., Tambon, F., Taraghi, M., Nikanjam, A., Khomh, F., Common Challenges of Deep Reinforcement Learning Applications Development: An Empirical Study, International Journal of Empirical Software Engineering [IF:4.1], 29, Article 95, Springer, 2024. View
- Tambon, F., Nikanjam, A., An, L., Khomh, F., and Antoniol, G., Silent Bugs in Deep Learning Frameworks: An Empirical Study of Keras and TensorFlow, International Journal of Empirical Software Engineering [IF:4.1], 29, Article 10, Springer, 2024. View
- Morovati, M.M., Nikanjam, A., Tambon, F., Khomh, F. and Jiang, Z, Bug Characterization in Machine Learning-based Systems, International Journal of Empirical Software Engineering [IF:4.1], 29, Article 14, Springer, 2024. View
- Yahmed, A.H., Abbassi, A.A., Nikanjam, A., Li, H. and Khomh, F., Deploying Deep Reinforcement Learning Systems: A Taxonomy of Challenges, IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 26-38, IEEE, 2023. View
- Tambon, F., Majdinasab, V., Nikanjam, A., Khomh, F., Antoniol, G., Mutation Testing of Deep Reinforcement Learning Based on Real Faults, 16th IEEE International Conference on Software Testing, Verification and Validation (ICST), pp. 188-198, 2023. View
- Morovati, M.M., Nikanjam, A., Khomh, F. and Jiang, Z., Bugs in Machine Learning-based Systems: A Faultload Benchmark, International Journal of Empirical Software Engineering [IF:3.762], 28, Article 62, Springer, 2023. View
- Nikanjam, A., Morovati, M.M., Khomh, F. and Ben Braiek, H., Faults in deep reinforcement learning programs: a taxonomy and a detection approach, Automated Software Engineering [IF:1.677], 29(1), pp.1-32. 2022. View
- Openja, M., Nikanjam, A., Yahmed, A.H., Khomh, F. and Jiang, Z., An Empirical Study of Challenges in Converting Deep Learning Models, IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 13-23, IEEE, 2022. View
- Nikanjam, A., Braiek, H.B., Morovati, M.M. and Khomh, F., Automatic fault detection for deep learning programs using graph transformations, ACM Transactions on Software Engineering and Methodology (TOSEM) [IF:3.685], 31(1), pp.1-27. 2021. View
- Nikanjam, A., Khomh, F., Design smells in Deep Learning programs: an Empirical Study, IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 332-342, IEEE, 2021. View
- Rivera-Landos, E., Khomh, F. and Nikanjam, A., The challenge of reproducible ML: an empirical study on the impact of bugs, IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), pp. 1079-1088, IEEE, 2021. View
Certification of ML-based systems
- Tambon, F., Laberge, G., An, L., Nikanjam, A., Mindom, P.S.N., Pequignot, Y., Khomh, F., Antoniol, G., Merlo, E. and Laviolette, F., How to certify machine learning based safety-critical systems? A systematic literature review, Automated Software Engineering [IF:1.677], 29(2), pp.1-74. 2022. View
- Mindom, P.S.N., Nikanjam, A., Khomh, F. and Mullins, J., On Assessing The Safety of Reinforcement Learning Algorithms Using Formal Methods, IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), pp. 260-269, IEEE, 2021. View
ML and EC for SE
- Côté, P-O., Nikanjam, A., Ahmed, N., Humeniuk, D., Khomh, F., Data Cleaning and Machine Learning: A Systematic Literature Review, Automated Software Engineering [IF:3.4], 31, Article 54, 2024. View
- Mindom, P.S.N., Nikanjam, A., and Khomh, F., Harnessing Pre-trained Generalist Agents for Software Engineering Tasks, 2024. View
- Mindom, P.S.N., Nikanjam, A., and Khomh, F., A Comparison of Reinforcement Learning Frameworks for Software Testing Tasks, International Journal of Empirical Software Engineering [IF:3.762], 28, Article 111, Springer, 2023. View
- Jamshidi, S., Nikanjam, A., Hamdaqa, M.A., Khomh, F., Attack Detection by Using Deep Learning for Cyber-Physical System, In: Traore, I., Woungang, I., Saad, S. (eds) Artificial Intelligence for Cyber-Physical Systems Hardening. Engineering Cyber-Physical Systems and Critical Infrastructures, vol 2. Springer, 2023. View
- Roy, S., Laberge, G., Roy, B., Khomh, F., Nikanjam, A., and Mondal, S., Why Don’t XAI Techniques Agree? Characterizing the Disagreements Between Post-hoc Explanations of Defect Predictions, IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 444-448, IEEE, 2022. View
- Pira, E., Rafe, V., Nikanjam, A., Using Evolutionary Algorithms for Reachability Analysis of Complex Software Systems Specified through Graph Transformation, Reliability Engineering & System Safety [IF:7.247], 191, Article 106577, Elsevier, 2019. View
- Pira, E., Rafe, V., Nikanjam, A., Searching for Violation of Safety and Liveness Properties Using Knowledge Discovery in Complex Systems Specified through Graph Transformations, Information and Software Technology [IF:3.862], 97, pp.110-134, Elsevier, 2018. View
- Pira, E., Rafe, V., Nikanjam, A., Deadlock Detection in Complex Software Systems Specified through Graph Transformation Using Bayesian Optimization Algorithm, Journal of Systems and Software [IF:3.514], 131, pp.181-200, Elsevier, 2017. View
- Pira, E., Rafe, V., Nikanjam, A., EMCDM: Efficient Model Checking by Data Mining for Verification of Complex Software Systems Specified through Architectural Styles, Applied Soft Computing [IF:8.263], 49, pp.1185-1201, Elsevier, 2016. View
- Rafe, V., Moradi, M., Yousefian, R., Nikanjam, A., A Meta-Heuristic Solution for Automated Refutation of Complex Software Systems Specified Through Graph Transformations, Applied Soft Computing [IF:8.263], 33, pp.136-149, Elsevier, 2015. View
- Rafe, V., Paiandeha, Z., Nikanjam, A., A Hybrid Optimization Algorithm Based on Harmony Search and Differential Evolution for Continuous Domain, Journal of Intelligent and Fuzzy Systems (JIFS) [IF:1.737], 29, pp.2169-2176, IOS Press, 2015. View
AI (ML and EC)
- Shajoonnezhad, N., Nikanjam, A., A stochastic variance-reduced coordinate descent algorithm for learning sparse Bayesian network from discrete high-dimensional data, International Journal of Machine Learning and Cybernetics [IF:4.377], 2022. View
- Mahdavimoghadam, M., Nikanjam, A. and Abdoos, M., Improved reinforcement learning in cooperative multi-agent environments using knowledge transfer, The Journal of Supercomputing [IF:2.557], 78(8), pp.10455-10479. 2022. View
- Fozuni, M., Nikanjam, A. and Aliyari Shoorehdeli, M., Stability analysis of the particle dynamics in bat algorithm: standard and modified versions, Engineering with Computers [IF:8.083], 37(4), pp.2865-2876. 2021. View
- Fozuni, M., Farzi, S., Nikanjam, A., MDPCluster: A Swarm-based Community Detection Algorithm in Large-Scale Graphs, Computing [IF:2.420], 102, pp.893–922, Springer, 2020. View
- Saleh-Sedghpour, A., Nikanjam, A., Overlapping Community Detection in Social Networks Using a Quantum-based Genetic Algorithm, Genetic and Evolutionary Computation Conference (GECCO2017), 197-198, Berlin, Germany, ACM, 2017. View
- Nikanjam, A., Karshenas, H., Multi-Structure Problems: Difficult Model Learning in Discrete EDAs, IEEE Congress on Evolutionary Computation (CEC2016), 3448-3454, Vancouver, Canada, IEEE, 2016. View
- Sharifi, H., Nikanjam, A., Karshenas, H., Najimi, N., Complexity of Model Learning in EDAs: Multi-Structure Problems, Genetic and Evolutionary Computation Conference (GECCO2014), 55-56, Vancouver, Canada, ACM, 2014. View
- Nikanjam, A., Rahmani, A., Exploiting Bivariate Dependencies to Speedup Structure Learning in Bayesian Optimization Algorithm, Journal of Computer Science and Technology [IF:1.871], 27, pp.1077-1090, Springer, 2012. View
- Nikanjam, A., Sharifi, H., Rahmani, A., Efficient Model Building in Competent Genetic Algorithm Using DSM Clustering, AI Communications [IF:1.029], 24, pp.213-231, IOS Press, 2011. View
- Rafe, V., Nikanjam, A., Rezaei, M., Galoan: A Multi-Agent Approach to Herd Cows, Annals of Mathematics and Artificial Intelligence [IF:1.019], pp.333-348, Springer, 2011. View
- Sharifi, H., Nikanjam, A., Rahmani, A., Interaction Detection for Hybrid Decomposable Problems, Genetic and Evolutionary Computation Conference (GECCO2011), 1203-1210, Dublin, Ireland, ACM, 2011. View
- Nikanjam, A., Sharifi, H., Helmi, B.H., Rahmani, A., Enhancing the Efficiency of Genetic Algorithm by Identifying Linkage Groups Using DSM Clustering, IEEE Congress on Evolutionary Computation (CEC2010), 1-8, Barcelona, Spain, IEEE, 2010. View
- Nikanjam, A., Sharifi, H., Helmi, B.H., Rahmani, A., A New DSM Clustering Algorithm for Linkage Groups Identification, Genetic and Evolutionary Computation Conference (GECCO2010), 367-368, Portland, USA, ACM, 2010. View
- Karshenas, H, Nikanjam, A., Helmi, B.H., Rahmani, A., Combinatorial Effects of Local Structures and Scoring Metrics in Bayesian Optimization Algorithm, ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 263-270, Shanghai, China, ACM, 2009. View
- Karshenas, H, Nikanjam, A., Helmi, B.H., Rahmani, A., Model Accuracy for Hierarchical Problems, IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS2009), 852-856, Shanghai, China, IEEE, 2009. View
- Rahmani, A., Saberi, A., Mohammadi, M., Nikanjam, A., AdeliMosabbeb, E., Abdoos, M., SHABaN Multi-Agent Team to Herd Cows, International Workshop on Programming Multi-Agent Systems (ProMAS), 248-252, Estoril, Portugal, Springer, 2008. View
- Mohammadi, M., Nikanjam, A., Rahmani, A., An Evolutionary Approach to Clustering Ensemble, 4th International Conference on Natural Computation (ICNC’08), 77-82, Jinan, China, IEEE, 2008. View
- Nikanjam, A., Rahmani, A., The Anticipatory Classifier System for Function Approximation, 12th Annual International CSI Computer Conference (CSICC2007), 2388-2391, Tehran, Iran, 2007. View
- Nikanjam, A., Rahmani, A., An Anticipatory Approach to Improve XCSF, Genetic and Evolutionary Computation COnference (GECCO2006), 1595-1596, Seattle, USA, ACM, 2006. View
- Dezfoulian, M., Kaviani, N., Nikanjam, A., Rafaee, M., Training a Simulated Soccer Agent How to Shoot Using Artificial Neural Network, 13th Multi-disciplinary Iranian Researchers Conference in Europe (IRCE), Leeds, UK, 2005. View